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On centrifugal separation of a mixture 
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An exact solution of the equations of motion of a two-phase fluid is given which 
describes separation in a centrifugal force field. A retrograde rotation is always 
produced in the settling process, which is characterized by propagating kinematic 
shocks and a time-dependent volume fraction of the mixture. 

1. Introduction 
We consider the separation of a fluid mixture in a centrifugal force field. The 

mixture consists of a dispersed phase of fluid droplets within a continuous phase of 
another liquid, as for example oil in water (or water in oil). Initially the two-phase 
fluid occupies the interior of a long cylindrical centrifuge and is in solid-body rotation 
with the container a t  angular velocity R. Of primary interest is the transient process 
which leads to the relatively simple, final state of separated fluids in rigid rotation. 

Although this problem is the analogue of that  considered by Kynch (1952), which 
dealt with gravitational settling of a mixture, rotational constraints implied by the 
conservation of angular momentum make for some significant differences. However, 
as before there is a simple exact solution of the nonlinear equations of motion that 
govern the rotating two-phase flow. 

2. Formulation 
Consider a mixture of two incompressible immiscible fluids of constant material 

properties in which the dispersed phase consists of droplets of approximately uniform 
size (e.g. spheres of constant radius). I n  terms of the volume fraction 01 = 0 1 ~  of the 
dispersed phase, the time-averaged variables of velocity v,, vD, pressure Pc, PD and 
shear stress zc, zD, the equations of two-phase flow as presented by Ishii (1975) and 
modified for the rotating coordinate frame are 

aa 
at 

--+v. (1 - O1)vc = 0, 

(1 -a )p ,  [%+vc. Vv,+252 x vc + fi x (52 x r) = - (1  -a)VP, + V . (1 - a ) z c  + M,. 1 
4 

(2.4) 
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Here velocities are measured relative to the rotating frame, and gravity is assumed 
to be negligible. The generalized interfacial drag forces are of the form 

Mc = -D(a )  (Vc-VD)+MS,, (2.5) 

MD = D ( ~ ) ( v , - v ~ ) + M S , ,  (2.6) 

where D(a) is a drag coefficient. ME, MS, depend on the shear stresses, but i t  will 
not be necessary to define these precisely because in the similarity solution to be 
presented all such shear terms are zero. (However, for definiteness we take 
MS, = 0 = MS,.) 

The stress tensors are assumed to  depend on the corresponding rates of strains in 
the conventional manner for Newtonian fluids so that 

Zf = y,(Vv,+ (Vv,)?) + Af(V . Vf) I (2.7) 

for f = C and f = D. (The extra interfacial deformation tensor that arises from the 
averaging procedure (Ishii 1975) is taken to be zero in this treatment. Commonly 
assumed forms would be zero anyway when a is a function of time only, as will be 
the case here.) 

The system of equations is closed by relating the pressures in the two phases 
through the capillary law 

(2.8) 
2a 

PD = PC+,> 

where a is the radius of the typical droplet and cr is the interfacial tension. 
The mixture occupies the volume between two long concentric cylinders that  are 

the lateral walls of the centrifuge, and on the boundaries r = r,, ri, vc = vD = 0 for 
all times. The initial conditions are 

a = aI ,  a constant, 

VC = 0 = VD. 

The drag coefficient is given by 

where 

to allow for the proper reduction to the Rybczinski-Hadamard law in the single- 
particle limit. Otherwise the form off(a) is not restricted. For most of this discussion, 
which deals with fluid-fluid mixtures, we use 

!(a) = a 1-- ( cr",) (2.10) 

and take the maximum volume fraction aM to be 1.  However, for a dispersed phase 
of solid particles (corresponding to pD --$ a), Barnea & Mizrahi (1973) and Ishii & 
Chawla (1979) give empirical relationships that imply an 'infinite' drag force at a 
maximum packing of the sediment. 

If the effects of the endwalls can be neglected, about which more will be said, and 
the major force balance is between centrifugal acceleration and drag, then i t  may be 
anticipated that the solution of the problem involves three distinct annular regions. 

Let pD > pc ,  so that the dispersed phase is the heavier fluid (unless specifically 
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stated otherwise). There will then be an annular region adjacent to the outer wall, 
for R,(t) < r < rot in which the dispersed phase is concentrated to a maximal volume 
fraction a = aM. For liquid droplets, which are distortable, aM = 1 is a realistic 
approximation (especially if coalescence can also occur). An inner region ri < r < R,(t) 
is occupied by the clarified continuous phase, and the mixture is contained in the 
narrowing annulus 

Ri(t) < r < R,(t). 

Abrupt changes in the flow variables occur across the interfaces Ri(t ) ,  R,(t), which 
are in fact kinematic shocks. 

Although constant conditions prevail in both the condensed and clarified zones, 
geometrical effects and the variation of centrifugal force with radial distance produce 
a flow in the mixture layer that is time-dependent. However, the complete solution 
of the full nonlinear equations can still be obtained by assuming that the velocities 
are proportional to radial distance, and that the volume fraction is a function of time 
only. Using dimensionless variables 

and scales chosen to highlight the balance of the drag force and the effective 
centrifugal ‘gravity’ in the rotating frame, a solution is sought of the form 

a = a(t*), (2.12) 

VC = u C P + w c O  = (r,Uc(t*)P+r, Vc(t*)O), (2.13) 

(2.14) 

(2.15) 

The substitution of these relationships in (2.1)-(2.4) leads to a set of ordinary 
differential equations for the unknown time coefficients. Note that all terms that 
involve the shear stresses tC, tD are automatically zero when the velocities vary 
linearly with radial distance as assumed. Upon dropping the cumbersome asterisk 
notation, so that hereinafter all variables are dimensionless, the system of equations 
is 

(2.16) 

(2.17) 

4-2 
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The two dimensionless parameters 

Ra2 

Pc K V C  
1 p=- P D - P C  c=- 

are the density ratio and a Reynolds number based 
velocitv. 

(2.22) 

on particle size and angular 

Equation (2.17), which results from adding (2.1) and (2.2), expresses the fact that  
there is no radial volume flow, although of course there must be a mass flux in this 
direction for separation to occur. 

The conservation of mass for each component of the mixture applies across the 
moving interfaces R,(t), Ri(t). If is the (radial) velocity of a surface of discontinuity 
then 

(2.23) 

For example, across the interface r = R,(t) between the mixture and the maximally 
condensed dispersed phase we have 

dR0 42 =-, a+ = a M ,  a-  = a ,  U& = 0,  U ,  = R,UD, U ,  = Rollc. (2.24) 
dt 

It follows that 

(2.25) 

For a fluid-fluid mixture aM FZ 1.  In  this case the preceding equation becomes 

(2.26) 

(For problems in which solid particles form the dispersed phase, rigid rotation of the 
condensed sediment with aM + 1 is consistent with these equations of motion only 
if the drag is essentially infinite for a = aM.) 

Similarly, across the shock a t  r = Ri ( t ) ,  where the continuous phase is purified, 

0- = o ,  a+ = 01, uc = 0, u&= RiU,, u&= RiUD, 

so that 
(2.27) 

The trajectory r = Ri ( t )  is then the path of the droplet or particle that  was initially 
in contact with the inner cylinder. If aM = 1, the surface r = R, ( t )  also corresponds 
to the particle path of the element of the continuous phase that was originally in 
contact with the outer cylinder. 

The conservation of total momentum across the kinematic shock provides jump 
conditions on the pressure and the circumferential velocity components. I n  terms of 
the density 

and the mass-averaged velocity defined by 

Prn = (l-a)PC+apD (2.28) 
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momentum conservation implies in general that  

[pm v,((A . v, -a)} + Apm- A .  rm]2 = 0. (2.30) 

Here 2, is the mean stress and A is the unit normal to the shock moving with velocity 
a. For the problems under consideration, the condition on the circumferential 
component of momentum reduces simply to 

v,]? = 0. (2.31) 

In  other words, the mean azimuthal velocity component given by (2.29) is continuous 
across a kinematic shock, which is in effect a no-slip constraint. The jump in the radial 
momentum component provides a relationship between the pressure on both sides 
of the shock. 

Equations (2.23) may be combined to  yield the jump condition for total mass 
conservation 1 

p,(%-um)]? = 0. (2.32) 

The Aow in the mixture layer may now be determined (independently from that in 
the other two annular regions) by integration of the system of equations (2.16)-(2.21), 
(2.25), (2.27) subject to the initial conditions at t = 0, 

r .  
Ri = R, = 2, 

TO 

U ,  = U ,  = V, = VD = 0, R, = 1 ,  a = a: I .  (2.33) 

The results of these calculations for typical parameter values are presented next. 
The flows in the regions of clarified fluid and the condensed discrete phase depend 

to a large extent on the relative strengths of the effective gravity and the viscous 
forces which ultimately bring the fluid to rest in the rotating frame. These more 
conventional spin-up problems of homogeneous fluids are discussed in $4. 

3. Solution 
Some additional notation is required in order that  the results can incorporate both 

positive and negative values of the density differences pD-pc,  i.e. - 1 < c < CO. Let 
R,(t) and R,(t) be the interfaces that respectively separate the mixture from the 
condensed, dispersed phase and the clarified continuous phase. For pD > pc, clearly 

R D ( ~ )  = Ro(t), R c ( ~ )  = Ri(t), (3.1) 

R D ( ~ )  = Ri(t)> Rc(t) = R,(t). (3.2) 

whereas for pD < pc the reverse holds: 

These relations merely reflect the fact that  the heavier phase is always thrown 
outwards. The initial conditions remain R, ( t )  = 1 ,  Ri ( t )  = R,. Jump conditions (2.26) 
and (2.27) are now more generally given by 
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These may be combined with (2.16) and (2.17) to obtain RD(t) ,  R,(t) as explicit 
functions of the volume fraction u(t) : 

or 

R,(t)= R,(O)(?)+. 

(3.5) 

Separation is completed when the two fronts meet a t  time t ,  that  is R, (t) = R, (i) 

Since the denser phase is always moved outwards by the centrifugal force, (2.16) 
implies that  the volume fraction of the mixture decreases with time for pD > pc and 
U,  > 0, but increases when pc > pD and UD < 0. The time for complete separation 
is longest when there is no solid inner surface against which material can collect. For 
ri = 0, (3.7) indicates that  5 -P 0 or E 4 EM, depending on whether pD is less than 
or larger than p,. Simply put, the volume fraction approaches zero or its maximum 
as the heavier fluid phase is 'squeezed' out of the mixture. 

In  order to  determine a(t), the remaining equations must be integrated, and this 
in general can only be done numerically. However, in the limit as e -, 0 (with the 
step function s = e/Ie.J being _+ 1, depending in the sign of e )  the equations can still 
be solved analytically. It is found that 

Furthermore, with the specification of the drag coefficient as 

and 

then 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

Moreover, the time of separation is 

The initial conditions on velocity cannot be satisfied in this special case. The 
implication is that for small non-zero e there will be a very short transient phase, 
a time boundary layer, in which the adjustment of the velocity from the initial setting 
occurs. 

A difficulty in setting e = 0 is that two equations, (2.19) and (2.21), become 
identical, and for this reason only a formula for the velocity difference V,- VD 



Centrifugal separation of a mixture 97 

1 .oo 

0.75 

0.50 

0.25 

I- 
" ' ~ " " " ' ~ "  

0 I 2 3 
Time 

FIQURE 1. Loci of the kinematic shocks R,(t) ,  R , ( t )  that bound the annular region of the mixture 
for inner radii of the centrifuge R,(O) = R, = 01, 0.2, 03, 04. Parameter setting: E = 01, = 01, 
a, = 04, aM = 1.0. 

emerges from the reduced system. A formal perturbation expansion in powers of E ,  

although laborious to execute, does lead to individual expressions for V, and V, a t  
the next order of approximation. This will not be pursued here; instead, 
numerical computations for small E are presented to validate the procedure. 

The pressure term may be eliminated from the system by subtracting (2.18) from 
(2.20); the equation obtained is further simplified by using (2.16) and (2.17) to replace 
U&(t) .  The result of all this algebra is an equation for the derivative of UD alone: 

With the drag coefficient given by (3.11), the final set of equations is then integrated 
numerically for any particular parameter values of interest. The same procedure can 
be followed with any other drag law, say one especially for sediment. Indeed the 
similarity form of solution could apply as well to more complicated drag interactions 
in which the effects of apparent mass and boundary-layer forces (Zuber 1964) are also 
included. However, a drag law that is appropriate for high Reynolds numbers in its 
dependence on the square of the velocity would not preserve similitude. 
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FIGURE %Flow variables for 8 = 0.01, 0 1 ,  1.0 and p = 0.1, a, = 0.4, aM = 1-0, El, = 0. (a)  Locus 
of the kinematic shock from the outer wall. ( b )  Volume fraction versus time. (c) Angular velocity 
versus time. Curves for V, are solid, those for VD are dashed. (d )  Radial velocity coefficients versus 
time. Curves for U ,  are solid, those for U ,  are dashed. 

4. Discussion 
Results of the calculations for parameter values perhaps typical of the fluid-fluid 

mixture are presented in the figures. Figure 1 shows the loci of the interfaces that 
separate the mixture layer from the ‘purified ’ or condensed fluid components. 
Clearly, i t  is only the position of the shock propagating away from the inside wall 
that  depends on the radius of the interior cylinder. For ri = 0 no such shock forms, 
since there is no solid surface to serve as a collection plate. In  this case the volume 
fraction of the mixture simply decays to  zero uniformly with time. 
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FIGURE 3. Flow variables for E = k01 and ,8 = 01,  a, = 0 4 ,  aM = 1.0, R, = 0. ( a )  Volume fraction 
versus time. ( b )  Angular velocity versus time. Curves for V, are solid and those for V, are dashed. 
( c )  Radial velocity coefficients versus time. Curves for U ,  are solid and those for U ,  are dashed. 

For the nominal values /3 = 0 1 ,  aI = 04, aM = 1 the dependence of the principal 
variables on time, for various e,  is shown in figures 2 and 3. The dimensionless 
separation time increases as e increases, partly because of the more effective role of 
the Coriolis force. Fore = 0.01 the results are in accord with (3.8)-(3.14). Qualitatively 
similar results are obtained for drag laws other than (2.10), e.g. f (a)  = a / ( l  -a). 

The evolution of a(t)  depends on &(t) and Rift) only to  the extent that  the meeting 
of these interfaces sets the time a t  which separation is completed. This is also true 
for the velocity components. 

An interesting conclusion is that the relative circumferential velocity component 
of each phase is always negative, which means that separation produces a retrograde 
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FIGURE 4. Angular velocity of the contained fluid at the instant of completed separation, 
corresponding to 8 = 0.1, /I = 0.1, aI = 0.4, aM = 0.6, R,  = 0.3. 

rotation with respect to the rotating container. In  essence, elements of the heavier 
fluid phase are displaced the greatest distance in the cylindrical geometry, and their 
reduced rotational speed, a consequence of the angular-momentum law, confers a 
lower peripheral speed on the entire fluid through drag interaction. 

There is a short transient phase in which accelerations are important and the 
velocities are adjusted from their initial values to those consistent with the separative 
process. This time boundary layer will not be discussed in greater detail here. 

The flow in the mixture can now be determined for any parameter setting and with 
modest effort even for more general momentum-interaction terms which include the 
effects of apparent mass, particle inertia and boundary layers. 

It remains to describe the flow of the ‘purified’ constituents. This depends to a 
large extent on the relative magnitude of viscous forces, which must eventually 
restore the entire fluid to a state of rigid rotation. Suppose that the rheological 
properties of the phases are similar and that the separation time, O(vp/Q2a2Ap),  is 
very short compared to that for fluid spin-up, O(Z/vQ)i) (1 is the length of the 
centrifuge), or for vorticity diffusion, O(rt /v ) .  The position of the shocks and the jump 
conditions across them are then sufficient to determine the velocities in the annular 
regions in contact with walls of the centrifuges. The appropriate velocity distribution 
is that left behind, so to speak, as a front passes a given position. Since the radial 
velocity components are zero outside the mixture layer and the circumferential 
components of mean velocity are continuous across the fronts, a plot of v,/r versus 
r ( = R,) and v,/r versus r (= R,) (figure 4) gives the angular velocity in the regions 
of clarified and condensed phases during and after separation. The spin-up of these 
fluid masses to rigid rotation is accomplished in the spin-up timescale by secondary 
circulations induced by Ekman layers a t  the end walls of the centrifuge. The physical 
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process is essentially that described in detail by Greenspan (1968), but modified to 
account for the two separate fluids, the interface between them, and the vertical 
boundary layers that  must arise at such locations. Of course, endwall effects are 
always present, and do produce a slight secondary circulation on the basic separating 
flow described in $ 3  (which applies ideally only to infinitely long cylinders). If spin-up 
and settling (or diffusion) times are comparable, 

then the effects of the Ekman layers may be important. The boundary layers must 
be considered, and the similarity solution modified accordingly when the droplets are 
extremely small, the rotation rate is low or the density difference is slight. 

Finally, in sedimentation problems the kinematic viscosity of the maximally 
condensed particles is essentially infinite compared with that of the mixture or of the 
clarified fluid. As solid particles cross the kinematic shock, they are simply added to 
a sediment layer that  is and stays in rigid rotation. However, the fluid motion 
elsewhere would be as described. 
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